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ABSTRACT

A theoretical approach is important for an understanding of the nonlinear effects in optical
media. It is important for practicability and system design to study optical soliton propagation
in optical nonlinear media. In this research work, ansatz method of solving differential
equation was used to derive the solution of unperturbed and perturbed cubic nonlinear
Schrodinger equation (CNLSE). The perturbation terms consist of Third-Order dispersion
term and self-steppening. The result of analytical study was used for the simulation using
surfer simulation software and the data was generated using Microsoft office excel. The
governing equation is the cubic nonlinear Schrédinger equation, (CNLSE), in the presence
of perturbation terms. The input pulse and the nonlinear coefficient parameter at the
wavelength of A = 1.55 um with pulse duration of T; = 30 Ps for group velocity dispersion
B, = —20 Ps2/km, nonlinear parameters y = 1.0 W'kg™ third-order dispersion TOD B =
0.01 Ps3/km, input power P, = 1.2 mW. The method of ansatz was used. The ansatz was
formulated and dimensionally verified. The CNLSE was divided into two, the perturbation
term and the unperturbation term. The simulation shows that the unperturbed CNLSE
become so large that the pulse cannot form a soliton and becomes broader than the input
pulse, the effect of two perturbation terms such as TOD and Self steppening are responsible
for improving the quality of the compressed pulse. From the simulations, it shows that the
velocity of pulse profiles propagation increase by the influence of b,, the amplitude
increases and the power loses decreases.
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1.0 Introduction

Today we are on the verge of another industrial revolution, the information revolution. The
present-day earth is becoming more digitized and light is playing an indispensable role in
keeping the communication lines open. Because of the internet, information flows across the
continents as easily as it flows across an office. The ever-increasing internet traffic will soon
exceed today’s performance limit of Terabits per second per fiber. The rapid increase in
network traffic demands reliability, more transmission capacity, good performance, rapid
transmission with less transmission loss. The above traits are easily achievable with fibers.
To offer high-bandwidth services ranging from home-based PCs to large business and
research organizations, telecommunication companies worldwide are using light waves that
travel within optical fibers as the dominant transmission system. Other examples include:
database queries and updated shopping, video-on-demand, remote education, video
conferencing, and web-based courses. A large number of research is in progress on optical
computers [1].

After the invention of the laser in 1960, people attempted to use it for communication
purposes because of its coherent radiation. Researchers struggled to find a suitable medium
for communications for more than five years. Fortunately, in 1966, the fiber medium
emerged as the best choice to transmit optical signals. The fiber is selected as a medium,
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because it has a peculiar property of confining an electromagnetic field in the plane
perpendicular to the axis of the fiber core. The physical principle behind such devices is the
principle of total internal reflection, which was first demonstrated by John Tyndall in 1870.
The first optical fibers were made from glass. The fibers are capable of guiding the light
similarly as electrons are guided in copper cables. Though the number of bits sent per
second increased, fiber loss was a serious problem. In traditional electrical communications,
the message is sent to distant places through copper cables, after superposing them over a
carrier wave. The process of superposition is called modulation. During modulation, the
amplitude, the frequency or the phase of the carrier changes in accordance with the
message and these modulations are respectively called Amplitude Modulation (AM),
Frequency Modulation (FM) and Phase Modulation (PM). The carrier here is one among the
known electromagnetic spectrum. At the receiving end, the message is extracted from the
carrier by a demodulation process.

The medium of transmission was later extended to atmosphere in which the carrier is either
radio waves or microwaves. The satellite communication system operates in the microwave
region. With the merits of fibers like low cost, easy installation, signal security, life more than
25 years, accommodation of more channels, low transmission loss, no electromagnetic
interference, abundant availability of raw material. The decade-old battle between the fiber
medium and the satellite systems for international communications to the fiber system being
the clear economic and technological winner. This is because the satellite communication
system is costly, life is limited to only five to ten years, handling the system requires more
technical and professional people and it has lower channel handling capacity. With the
astonishing development of lasers, various telecommunication companies across the world
have started using light as the ascendant transmission system. In fiber systems, the
transmission of signals is through dielectric media called waveguides. The medium is of hair
thin glass fibers that guide the light signals over long distances. As the carrier here is light,
this type of communication is called Optical Fibre Communication [2].

In both wired and wireless communications the amount of information transmitted can be
increased by increasing the range of the frequency of the carrier called bandwidth. Optical
Frequency carrie (OFC) system is an excellent communication system compared to the
other media such as copper or atmosphere. They offer low-loss transmission over a wide
range of frequencies of about 50 THz. This range is several times more than the bandwidth
available in copper cables or any other transmission medium. Because of this property, this
system allows signals to be transmitted over very long distances at higher speeds before
they need to be amplified. Unlike the electrical communications, in optical systems, the
transmission of information in an optical format, which is carried out not by AM, FM or PM of
the carrier but by varying the intensity of the optical power. The information to be sent is
converted into bits (zero or one) using an Analog-to-Digital Converter (ADC) [3].

This fiber loss can still be limited by using periodic amplifiers. The dispersion loss can be
reduced by a dispersion compensation scheme, which requires the wavelength to be at
1330 nm for almost zeroing dispersion. A major accomplishment in the development of OFC
was the invention of Erbium Doped fiber Amplifiers (EDFA) in 1987 [4].

The word soliton refers to special kinds of wave packets that can propagate undistorted over
long distances. Solitons have been discovered in many branches of physics. In the context
of optical fibers, not only are solitons of fundamental interest but they have also found
practical applications in the field of fiber-optic communications [5].

Such waves were later called solitary waves. However, their properties were not understood
completely until the inverse scattering method was developed. The term soliton was coined
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in1965 to reflect the particle like nature of those solitary waves that remained intact even
after mutual collisions. Since then, solitons have been discovered and studied in many
branches of physics including optics. In the context of optical fibers, the use of solitons for
optical communications was first suggested in 1973 [6].

The Cubic Nonlinear Schrodinger equation (CNLSE) is a nonlinear partial differential
equation that does not generally lend itself to analytic solutions except for some specific
cases in which the inverse scattering method can be employed. A numerical approach is
therefore often necessary for an understanding of the nonlinear effects in optical fibers. A
large number of numerical methods can be used for this purpose. These can be classified
into two broad categories known as: The finite-difference methods; split-step Fourier method
and the Pseudospectral methods. The one method that has been used extensively to solve
the pulse-propagation problem in nonlinear dispersive media is the split-step Fourier
method. In this research the method of Ansatz was used to determine the effect of perturbed
and unperturbed CNLSE because the method is straight forward and fast in determine the
pulse profile in an optical fiber in single mode pulse propagation. The relative speed of this
method compared with most finite-difference schemes can be attributed in part to the use of
the ansatz method. This research also determine the influence and effect of each
perturbation terms in single-mode optical fiber with CNLSE.

The purpose of this work is to analyse and simulate the soliton pulse profiles in single mode
optical fiber with cubic nonlinear Schrodinger equation (CNLSE).
The specific objectives are:
1. To determine the effect of third order dispersion (TOD) term on solitary wave pulses in
optical fiber
2. To examine influence of self stepenning on soliton pulse propagation
To determine nonlinear effects without the perturbation terms in the wave profiles
4. To determine effects of nonlinear perturbation terms in the wave profiles

[98]

2.0 MATERIALS AND METHODS

Materials
The materials used in this research are computer softwares: Surfer and Microsoft office
excel.

21 Method of Ansatz

In physics and mathematics, an ansatz is a placement of a tool at a work piece. It can also
be regarded as an educated guess or an additional assumption made to help solve a
problem, and which may later be verified to be part of the solution by its results [7].

An ansatz is the establishment of the starting equations, the theorems, or the values
describing a mathematical or physical problem or solution. It typically provides an initial
estimate or framework to the solution of a physical or mathematical problem, and can also
take into consideration of the boundary conditions (in fact, an ansatz is sometimes thought
of as a "trial answer" and an important technique in solving differential equations). An ansatz
which can be used to constitute nothing more than an assumption, has been established.
The equations are solved more precisely for the general function of interest, which then
constitutes a confirmation of the assumption. In essence, an ansatz makes assumptions
about the form of the solution to a problem so as to make the solution easier to find [8].
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An ansatz method can be employed to solve CNLSE. CNLSE is a homogeneous linear
differential equation to take an exponential form or a power form in the case of a differential
equation. More generally, one can guess a particular solution of a system of equations and
test such an ansatz by directly substituting the solution into the system of equations. In
many cases, the assumed form of the solution is general enough that it can represent
arbitrary functions, in such a way that the set of solutions found this way is a full set of all the
solutions.

2.2 Solution of Unpartubed Cubic Nonlinear Schrodinger Equation
The solution of unperturbed CNLSE was used to determine nonlinear effects without the
perturbation terms in the wave profiles

The normalized CNLSE without perturbation terms is [8]
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@’ is a constant of separation, that represent the mode of propagation equation from the

pulse propagation equation.

For the fundamental solution N = 1; thus, the ansatz is

U(¢,7) = Uyexpli(¢ — 7, - 7)) Sech(#J (9)

Next is to use equation (9) in equation (1), as follows:
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To use equation (24) for simulation, recall that

e e
|U((§,r)2 =sech{%} (25)
U(e.)= sech(%J (26)

Equation (26) was utilized to determine nonlinear effects without the perturbation terms in
the wave profiles for the fundamental soliton or solitary wave.

2.3 Solution of TOD as the first perturbation term
The solution of third order dispersion (TOD) was used to determine the effect of third order
dispersion (TOD) term on solitary wave pulses in optical fiber

The normalized CNLSE with first perturbation terms is [5]
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By comparing the coefficients of sech (x) tanch (x) and sech (x) in equation (30) one
gets
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1
Equation (36) was used for the simulation of first perturbation term in figure 1.0

2.4  Solution with Second Perturbation term of CNLSE
The solution of second perturbation term was used to examine the influence of self
stepenning on soliton pulse propagation.

The normalized CNLSE with second perturbation terms is
2
ih 8_U —aU — 0 12]
o0& ot
The fifth term of equation (3.36) can be evaluated as

_ib, X (vt u)=u? sech’ (x) 3i/b, tanh(x) + exp(iy) (38)
2 (%Q | ) 0 T 7, p

Next is to use equation (3.10), (3.13), (3.14) and (3.38) in (3.37). Thus

+du|’U —ib, §QU|2U)=O (37)
T

ihU, exp(iy) sec h(x)(# tanh(x) +i 7/) —aU, exp(iy)sech(x)

U, p°

+exp(iy)[(a)25U0— P Jsech(x)—M

sech(x) tanh(x)}
(39)

+cU, exp(iy)sch’x+U; [sec n (x)(@ tanh(x) + b, H exp(iy) =0

76



Bayero Journal of Physics and Mathematical Sciences / Vol. 16, No. 1/ March, 2025. ISSN: 1597 — 9342, Online ISSN: 2795 - 3866

Hence equation (3.39) yields
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Equation (47) was used for the simulation of second perturbation term in figure 1.2

77



Bayero Journal of Physics and Mathematical Sciences / Vol. 16, No. 1/ March, 2025. ISSN: 1597 — 9342, Online ISSN: 2795 - 3866

Table 1.0: Parameters used for Data Generation and Simulation

S/IN Parameter Name Values S.l Units

1 Non-linear parameter y 1.0 w'g”
2 Dispersion of the second order 3, -20.0 x107"2 s?/m
3 Pulse width 7, 30 X 107 s
4 Third order Dispersion S, 1% 107 s’/m
5 Frequency w 209.53 rad/s
6 Wavelength A 1.55 x10° m
7 Self Stepenning b, 0.16
9. Input Power P, 1.2 x 107 W
10 Dispersion Length Lp 4.5 x 102 m
11 Nonlinear Length Ly, 833.3 m

Source: [5].

3.0 RESULT AND DISCUSSION

31 Introduction

The main aim of the study was to simulate perturbed and unperturbed CNLSE in an optical
fiber profile using ansatz method. The result and discussion of the findings are presented
as.

3.2 The Result and Discussion of unperturbed CNLSE

The result of the solution of unperturbed CNLSE was used to determine nonlinear effects
without the perturbation terms in the wave profiles was simulated using equation (26) as
shown in Fig. 1.

Normalized Amplitude

Time(s) =24l 10

Disdance (m)

Figure. 1. Profile of the unperturbed CNLSE with dimensionless pulse width of T = V2
input power of Py = 1.2 mW, shows that the maximum normalized amplitude U, = 1and the
corresponding power P = 1.2 mW which shows no effect on the pulse propagation

Figure. 1. shows the simulation of pulse propagation of input pulse corresponds to the case
of single eigenvalue. This is referred to as the fundamental soliton because its shape does
not change on propagation which agreed with the result of [6].

The input pulse was simulated using equation (26) where the distance is initially set to be
zero to correspond at any point in time in a given pulse width. Fig. 4.1 is the simulation from
the analytical result which is governed by equation (1.0), which is the solution to
unperturbed CNLSE given by equation (26)
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3.3 The Result and Discussion of first perturbation term of CNLSE

The result of the solution of first perturbation term of CNLSE was used to determine the
effect of third order dispersion (TOD) term on solitary wave pulses in optical fiber was
simulated using equation (36) as shown in Figure. 2

Normalised Amplitude

Time (s) Distance (m)
Fig. 2. Profile of first perturbation term of CNLSE pulse propagation using equation 7 = 4p,

with dimensionless pulse width of T = 0.64, input pulse power Py = 1.2 mW, The maximum
normalized amplitude is Uy = 1.

Figure 3 shows the pulse propagation simulation of first perturbation term equation (27). The
data was generated using equation (35). The result shows that the optical pulse propagated
relatively far from the zero dispersion wavelength of an optical fibre, the TOD effect on
soliton is small and can be treated as pertubatively. The simulation propagated at a
maximum normalized amplitude 1 of which is approximately equal to the intensity of the
fundamental input pulse and the velocity of pulse propagation is the same as that of the
unperturbed equation. Finally, the frequency and amplitude are not affected. The pulse
profile shown in figure 1.1 was partially similar with that of [5] because the input pulse of
T = 0.64, input pulse power Py = 1.2 mW, The maximum normalized amplitude is U, = 1.

3.4 The Result and Discussion of Second Perturbation Term of CNLSE

The result of the solution of second perturbation term of CNLSE was used to examine
influence of self stepenning on soliton pulse propagation using equation (47) as shown in
Figure. 3

Normalized Amplitude

15

20 0

Time (s) Distance (m)
Figure 3: Profile of second perturbation term of CNLSE with dimensionless pulse width of
T = 0.03, input power Py = 1.2 mW and Self Stepenning = 0.76. The maximum normalized
amplitude Uy = 1 was obtained from the simulation in Fig. 3
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The simulation presented in Figure 1.2 is the pulse profile solution of equation (47), which is
the solution of the second perturbation term given by equation (37). The result shows that
the pulse created an optical shock on the trailing edge of the pulse in the absence of GVD
effect and TOD because of higher intensity dependence of the GVD that result in the peak of
the pulse moving slower than the unperturbed CNLSE. The result also shows that the
maximum normalized intensity is 1 which corresponded with input pulse of T = 0.03, input
power P, = 1.2 mW and Self Stepenning = 0.76. The maximum normalized amplitude U, =
1. The self stepenning was actually the one responsible for improving the pulse profile as it
correspond with the result of [6].

4.0 Conclusion

This research investigated the numerical pulse simulation of CNLSE by using a
mathematical method called the method of ansatz of solving differential equation. The
solution of perturbed and unperturbed CNLSE and the result of analytical and numerical
study of CNLSE soliton pulse propagation have been investigated and simulated using
surfer simulation software and the data used for the simulation was generated using
Microsoft office excel. The simulation the pulse profiles shows that the unperturbed CNLSE
become so large that the pulse cannot form a soliton and becomes broader than the input
pulse, the effect of perturbation terms such as TOD, Self steppening are responsible for
improving the quality of compressed pulse.

REFERENCES

[1] Schubert, M., & Wilhelmi, B. (2000). Nonlinear optics and quantum electronics. New
York.

[2] Yamamoto, T., Yoshida, E., Tamura, K. R., Yonenaga, K., & Nakazawa, M. (2000). 640
Gbit/s optical TDM transmission over 92 km through a dispersion-managed fiber
consisting of single-mode fiber and" reverse dispersion fiber". [EEE Photonics
Technology Letters, 12(3), 353-355.

[3] Edson Silva, Luis Carvalho, Carolina Franciscangelis, Julio Diniz, Aldario Bordonalli and
Julio Oliveira, (2013). Spectrally-Efficient 448-Gb/s dual-carrier PDM-16QAM
channel in a 75-GHz grid, Proceedings of OFC/NFOEC 2013, paper JTh2A.39, CA,
USA, March 17-21, 2013.

[4] Tang, D. Y., Zhang, H., Zhao, L. M., & Wu, X. (2008). Observation of high-order
polarization locked vector solitons in a fiber laser. Physical review letters, 101(15),
153904.

[5] Agrawal, G. P. (2004). Nonlinear fiber optics. In Nonlinear Science at the Dawn of the
21st Century. Springer, Berlin, Heidelberg.

[6] Salimullah, S. M. (2015). Analysis of higher-order soliton compression for formation of
ultra-short pulses. (Doctorate Thesis). Bangladesh Army International University of
Science and Technology

[7]1 Gershenfeld, Neil A. (1999). The nature of mathematical modeling. Cambridge:
Cambridge University Press. p. 10. ISBN 0-521-57095-6. OCLC 39147817)

[8] Lexico Dictionaries | English. Archived from the original on October 26, 2020.
Retrieved 2020-10-22.)

80



